

UNIVERSIDAD DE GRANADA

PONENCIA DE QUÍMICA Reunión de Coordinación PAU

Distrito Universitario de la UGR (Granada / Ceuta / Melilla / ISS Marruecos)

Curso 2025-26

Reunión coordinación PONENCIA de QUIMICA 2025/26 Orden del día

- 1) Presentación de los ponentes de Química y web de la DUA.
- 2) Resultados de la PAU del curso anterior 2024/25.
- 3) Orientaciones para la PAU del curso 2025-26.
- 4) Información sobre las Olimpiadas de Química 2026.
- 5) Ruegos, sugerencias y preguntas.

1) Presentación de los ponentes de Química y web de la DUA

José María Moreno Sánchez

jmoreno@ugr.es

María Ángeles Sánchez Guadix

masguadix@gmail.com

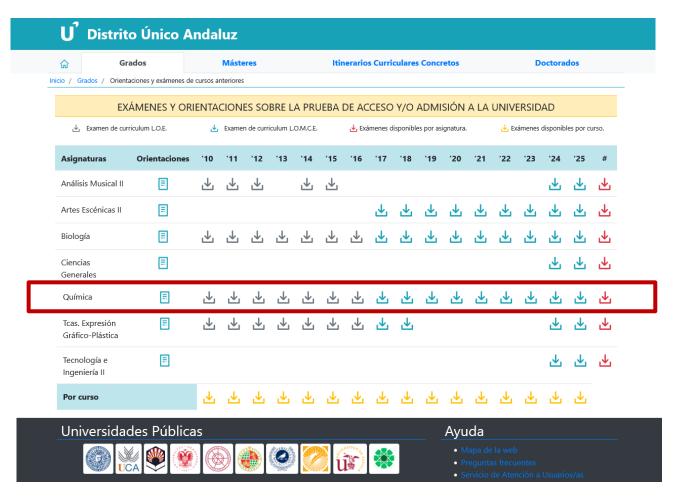
Facultad de Ciencias

Departamento de Química Inorgánica

1) Presentación de los ponentes de Química y web de la DUA

https://www.juntadeandalucia.es/economiaconocimientoempresasyuniversidad/sguit/?q=grados

1) Presentación de los ponentes de Química y web de la DUA


o Nota Informativa sobre la elección de segunda lengua

extranjera en la PEvAU

U Distrito Único Andaluz Másteres **Itinerarios Curriculares Concretos Doctorados** Grados Inicio / Grados Fechas más relevantes del proceso de preinscripción Mayores de 40 años ▼ Catálogo de Grados Mayores de 45 años ▼ Notas de corte de años anteriores Titulados Universitarios ▼ Procedimiento tras las publicación de listas Bachillerato Europeo, Internacional o sistemas educativos de Estados de la UE. o con acuerdos internacionales. < Desde Bachillerato -Desde Estudios Extranjeros homologados al de Bachiller • Calendario de la prueba Español * • Prueba de evaluación del bachillerato para el acceso a la • Orientaciones y exámenes de cursos anteriores Documentación a aportar • Proceso de Admisión Oficinas de Admisión · Normativa sobre acceso Normativa básica estatal (Real Decreto 412/2014) o Acuerdo por el que se establece el ingreso a Grados para estudiantes - Curso 2024/2025 o Acuerdo por el que se establece el ingreso a Grados para estudiantes con estudios extranjeros - Curso 2024/2025 o Acuerdo para las pruebas de evaluación de Bachillerato Extracto normativa y organización (PEvAU) o Parámetros de Ponderación (Para la PEvAU) o Información sobre el material permitido en la PEvAU o Nota Informativa sobre el uso de calculadoras en la PEvAU

1) Presentación de los ponentes de Química y web de la DUA

1) Presentación de los ponentes de Química y web de la DUA

COORDINACIÓN GENERAL DE ACCESO

https://coga.ugr.es/pages/ponencias/*/show/notification/716

https://www.upo.es/ponencia_quimica/

Reunión coordinación PONENCIA de QUIMICA 2025/26 Orden del día

- 1) Presentación de los ponentes de Química y web de la DUA.
- 2) Resultados de la PAU del curso anterior 2024/25.
- 3) Orientaciones para la PAU del curso 2025-26.
- 4) Información sobre las Olimpiadas de Química 2026.
- 5) Ruegos, sugerencias y preguntas.

2) Resultados de la PEvAU del curso anterior 2023/24.

Matriculados/Presentados

Distrito UGR 2025								
Año	Oı	rdinaria	a	Extraordinaria				
Ano	Matr.	Pres.	%	Matr.	Pres.	%		
2025	2270	2117	93.3	610	521	85.4		
2024	2412	2285	94.7	678	581	85.7		
2023	2205	2098	95.1	731	635	86.9		
2022	2199	2102	95.6	546	470	86.1		
2021	2198	2091	95.1	566	495	87.5		
2020	2311	2234	96.7	455	389	85.5		
2019	2109	2043	96.9	412	362	87.9		
Media	2243	2139	95.3	565	489	86.6		

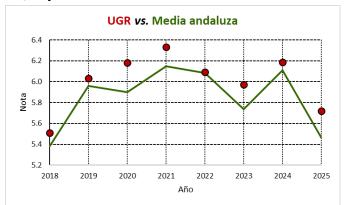
Zonas/Ordinaria

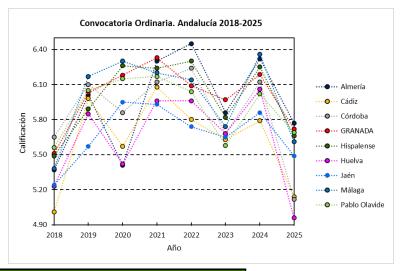
Distrito UGR 2025 convocatoria Ordinaria						
Zona	Matr.	Pres.	Pres. %	Media	Aprob. %	
Ceuta	133	123	92.5	5.812	70.73	
Granada	1879	1757	93.5	5.771	67.10	
Marruecos	83	77	92.8	5.677	63.64	
Melilla	131	117	89.3	5.225	63.25	

Calificaciones/Aprobados

	Distrito UGR 2025					
Año	Ord	inaria	Extraordinaria			
Allo	Media	Aprob. %	Media	Aprob. %		
2025	5.715	66.51	4.507	47.79		
2024	6.186	71.73	4.700	53.01		
2023	5.980	70.35	5.071	56.85		
2022	6.089	68.74	4.176	42.13		
2021	6.331	73.08	5.432	61.01		
2020	6.185	70.77	4.874	54.50		
2019	6.027	69.70	5.364	59.39		
Media	6.073	70.13	4.875	53.53		

Zonas/Extraordinaria

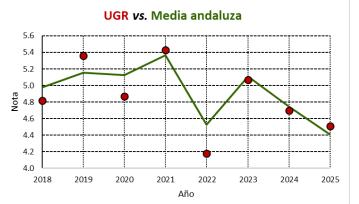

Distrito UGR 2025 convocatoria Extraordinaria						
Zona	Matr.	Pres.	Pres. %	Media	Aprob. %	
Ceuta	51	40	78.4	4.795	52.50	
Granada	501	441	88.0	4.535	47.85	
Marruecos	4	3	75.0	1.797	0.00	
Melilla	52	35	67.3	4.256	48.57	

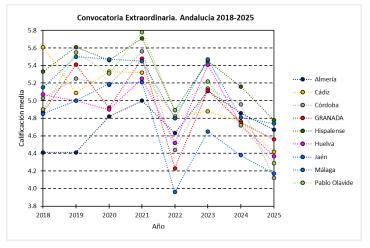


PAU 25-26

Distrito Andaluz convocatoria Ordinaria

Calificaciones / Aprobados %


Calificaciones medias convocatoria Ordinaria ANDALUCÍA										
Distrito				Año					Aprob.	% 24-%25
DISTITLO	2018	2019	2020	2021	2022	2023	2024	2025	(%)	Aprob.
Almería	5.37	6.01	5.41	6.30	6.45	5.86	6.32	5.77	63.13	-8.66
Cádiz	5.01	5.98	5.57	6.08	5.80	5.63	5.79	5.14	53.59	-10.80
Córdoba	5.65	6.10	5.86	6.12	6.24	5.68	6.12	5.12	54.67	-17.44
GRANADA	5.51	6.03	6.18	6.33	6.09	5.97	6.19	5.72	66.51	-5.22
Hispalense	5.49	5.89	6.26	6.24	6.30	5.82	6.25	5.66	62.11	-7.46
Huelva	5.23	5.85	5.42	5.96	5.96	5.68	6.06	4.96	52.20	-16.53
Jaén	5.24	5.57	5.95	5.93	5.74	5.65	5.86	5.49	61.76	-2.60
Málaga	5.38	6.17	6.30	6.20	6.14	5.74	6.36	5.61	63.65	-8.12
Pablo Olavide	5.56	6.05	6.15	6.17	6.04	5.58	6.02	5.69	60.89	-4.20
Media	5.38	5.96	5.90	6.15	6.08	5.73	6.11	5.46	59.83	-9.00
Dif (máx./mín.)	0.64	0.60	0.89	0.40	0.71	0.39	0.57	0.81	14.31	14.84



PAU 25-26

Distrito Andaluz convocatoria Extraordinaria

Calificaciones / Aprobados %

Calificaciones medias convocatoria Extraordinaria ANDALUCÍA										
Distrito				Año					Aprob.	% 24-%25
Distitto	2018	2019	2020	2021	2022	2023	2024	2025	(%)	Aprob.
Almería	4.3 6	4.36	4.77	4.95	4.58	5.06	4.81	4.62	40.66	-10.11
Cádiz	5.56	5.04	5.28	5.27	4.77	4.83	4.71	4.37	41.02	-8.41
Córdoba	4.98	5.20	5.13	5.51	4.39	5.09	4.91	4.07	37.03	-22.06
GRANADA	4.82	5.36	4.87	5.43	4.18	5.07	4.70	4.51	47.79	-5.22
Hispalense	5.28	5.56	5.41	5.66	4.84	5.40	5.11	4.73	47.57	-5.87
Huelva	5.02	4.95	4.85	5.20	4.47	5.36	4.67	4.32	38.89	-12.41
Jaén	4.80	4.95	5.14	5.16	3.91	4.60	4.33	4.12	31.03	-11.47
Málaga	5.10	5.45	5.42	5.40	4.75	5.42	4.76	4.69	49.78	0.50
Pablo Olavide	4.85	5.50	5.26	5.73	4.84	5.17	4.67	4.24	38.46	-1.79
Media	4.97	5.15	5.13	5.37	4.53	5.11	4.74	4.41	41.36	-8.54
Dif (máx./mín.)	1.20	1.20	0.65	0.78	0.93	0.82	0.78	0.66	18.75	22.56

Nota media y porcentaje de aprobados

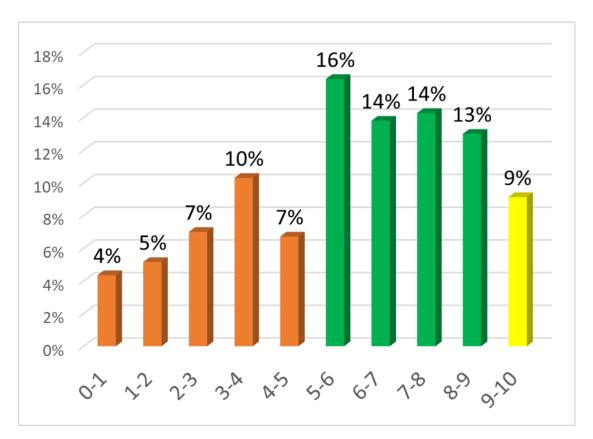
NOTA MEDIA

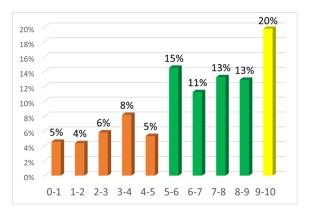
nota media

5,72

APROBADOS

aprobados


66,5 %



Distribución de notas

2024

Resultados por pregunta

CUESTIÓN 1A (Átomo y Sistema Periódico)

- 1A. Escriba las configuraciones electrónicas de los siguientes elementos:
- a) El elemento del grupo 14 de menor carácter metálico.
- b) El elemento del tercer periodo de mayor radio atómico.
- c) El elemento del cuarto periodo con solo un electrón en un orbital "d".
- d) El elemento del segundo periodo que tiene más tendencia a formar un catión divalente.

LA HACEN	MEDIA	NOTA	
33 %	1,19	5,9	

Resultados por pregunta

CUESTIÓN 1B (El enlace químico)

- 1B. a) Dadas las moléculas H₂S y PF₃, razone en cuál o cuáles de ellas el átomo central presenta algún par de electrones sin compartir.
- b) Justifique la geometría que presenta la molécula de PF3
- c) Indique la hibridación del átomo central del H₂S.
- d) ¿Por qué la molécula BF3 es apolar?

LA HACEN	MEDIA	NOTA
67 %	1,34	6,7

Resultados por pregunta

CUESTIÓN 2A (Termodinámica)

2A. Justifique si son verdaderas o falsas las siguientes afirmaciones:

- a) Un proceso exotérmico y espontáneo a cualquier temperatura tendrá $\Delta S > 0$.
- b) La sublimación del diyodo es un proceso que implica un aumento de entropía.
- c) En todos los procesos espontáneos la entropía del sistema aumenta.
- d) La reacción $PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$ ($\Delta H^0 = -86 \text{ kJ} \cdot \text{mol}^{-1}$) no es espontánea a ninguna temperatura.

LA HACEN	MEDIA	NOTA	
32 %	1,08	5,4	

Resultados por pregunta

CUESTIÓN 2B (Cinética química)

- **2B.** La reacción química $2A + B \rightarrow C$ tiene como ecuación de velocidad $v = k \cdot [A]^2 \cdot [B]$. Responda razonadamente:
- a) ¿Cuál es el orden total de la reacción?
- b) Determine las unidades de la constante de velocidad.
- c) ¿Se puede considerar que, durante el transcurso de la reacción química, la velocidad de la reacción permanece constante?
- d) ¿La velocidad de desaparición de B es igual que la velocidad de aparición de C?

LA HACEN	MEDIA	NOTA	
68 %	1,92	6,5	

Resultados por pregunta

PROBLEMA 3A (Equilibrio)

3A. El equilibrio de descomposición del NaHCO3 puede expresarse como:

 $2NaHCO_3(s) \rightleftharpoons Na_2CO_3(s) + CO_2(g) + H_2O(g)$

Para estudiar este equilibrio en el laboratorio, se depositaron 200 g de NaHCO₃(s) en un recipiente cerrado de 25 L, en el que previamente se hizo el vacío y se calentó a 110 °C. La presión en el interior del recipiente, una vez alcanzado el equilibrio, fue de 1,65 atm. Calcule:

- a) La masa de NaHCO₃(s) que queda en el recipiente tras alcanzarse el equilibrio a 110 °C.
- b) El valor de KP y Kc a esa temperatura.

Datos: R=|0,082 atm·L·mol-1·K-1; Masas atómicas relativas: Na= 23; O= 16; C= 12; H= 1

LA HACEN	MEDIA	NOTA
56 %	0,89	4,4

Resultados por pregunta

PROBLEMA 3B (Ácido Base)

- **3B.** Se preparan 250 mL de una disolución acuosa de HNO₃ a partir de 2 mL de una disolución comercial de densidad 1,12 g·mL⁻¹ y 20% de riqueza en masa.
- a) ¿Qué molaridad y pH tendrá la disolución preparada?
- b) ¿Qué volumen de una disolución de NaOH 0,02 M será necesario añadir para neutralizar 100 mL de la disolución que se ha preparado? Datos: Masas atómicas relativas: O= 16; N= 14; H= 1

LA HACEN	MEDIA	NOTA	
44 %	1,39	7,0	

Resultados por pregunta

CUESTIÓN 4 (Orgánica con formulación)

4A. Nombre o formule los siguientes compuestos:

- a) CH₃-CH=CH-CH=CH₂
- **b)** $CH_3-CH(OH)-CH_2-CN$
- c) 3-Metilpent-2-eno

d) Etanamida

- 4B. a) Escriba y ajuste la reacción de combustión del CH₃CH₂CH₃
- b) Escriba y ajuste la reacción de deshidratación del CH₃CH₂CH₂OH
- c) Escriba un isómero de función del compuesto CH3COCH2CH3

LA HACEN	MEDIA	NOTA	
100%	0,81	5,4	

Resultados por pregunta

PROBLEMA 5 (Electroquímica, solubilidad y formulación inorgánica) Competencial

Tabla. Potenciales normales

E°(V)

+0.80

+0.34

-0.04

-0.76

-1.67

-238

de reducción

Electrodo

Ag+/Ag

Cu2+/Cu

Fe3+/Fe

7n2+/7n

Al3+/Al

Mg2+/Mg

PREGUNTA 5.- (2,5 puntos). Responda TODOS los apartados planteados.

PROTECCIÓN CONTRA LA CORROSIÓN

El deterioro como consecuencia de la oxidación es un gran problema económico para industrias que utilizan estructuras de hierro o de acero, sobre todo si se encuentran en ambientes húmedos o directamente en contacto con el agua, como plataformas sumergidas en el mar, tuberías subterráneas o cascos de barcos. En estos casos, la oxidación para formar óxido de hierro(III) es muy rápida y supondría grandes inversiones económicas tener que sustituir frecuentemente las partes oxidadas.

Una solución para evitar la oxidación del hierro y del acero es incorporar a la estructura piezas de otros metales que puedan formar con el hierro una pila galvánica en la que éste sea el cátodo y el otro metal funcione como ánodo. A este método de protección se le llama "protección catódica" y a las piezas metálicas utilizadas para ello se les llama ánodos de sacrificio.

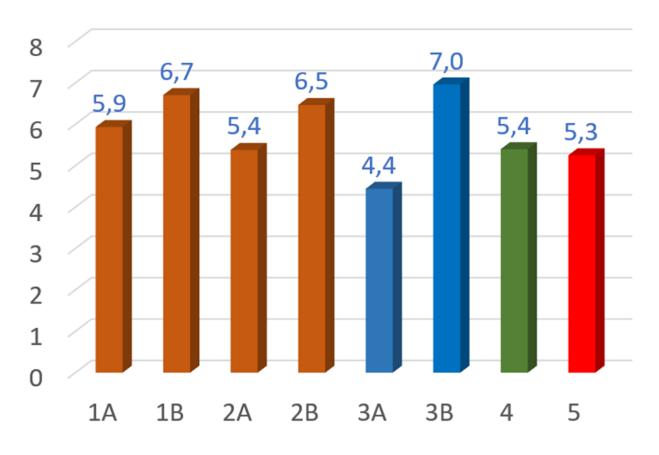
Uno de los metales más usados como ánodo de sacrificio es el magnesio, que puede obtenerse a partir del agua del mar, donde se encuentra disuelto en forma de MgCl₂ y de sulfato de magnesio. Una vez separado el MgCl₂ sólido, se procede a su electrolisis en estado fundido obteniéndose magnesio y cloro

En la corteza terrestre también está presente el magnesio en forma de MgCO₃ (K_S= 3,5·10⁻⁸), compuesto insoluble al igual que otras especies de este metal como el fosfato de magnesio (Ks= 1,04·10-24), el MgF_2 ($K_S = 5,16 \cdot 10^{-11}$) o el $Mg(OH)_2$ ($K_S = 5,61 \cdot 10^{-12}$).

- a) Justifique cuáles de los metales de la Tabla pueden utilizarse como ánodo de sacrificio. (0,5 puntos)
- b) Calcule la intensidad de corriente necesaria para obtener una producción diaria de 10 kg de magnesio metálico por electrólisis de MgCl₂ fundido, escribiendo la reacción correspondiente. (0,5 puntos)

Datos: F= 96500 C·mol-1, Masa atómica relativa: Mg= 24,3

- c) A partir del equilibrio de solubilidad del MgCO₃, determine la masa de magnesio que hay disuelta en 25 L de disolución saturada de dicha
- d) Nombre o formule los cuatro compuestos que aparecen en negrita en el texto. (0,5 puntos)


MEDIA

1,31

NOTA

Comparativa de preguntas

1A: Átomo y Sistema Periódico

1B: Enlace

2A: Termodinámica

2B: Cinética química

3A: Problema equilibrio

3B: Problema ácido base

4: Orgánica

5: Problema competencial

Nota media y porcentaje de aprobados

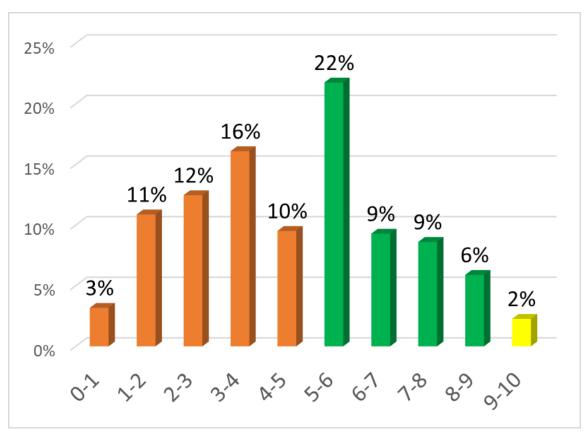
NOTA MEDIA

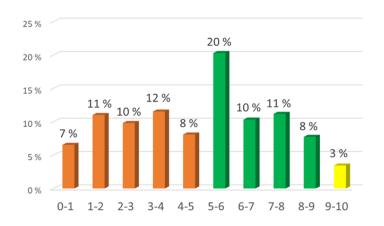
nota media

4,51

APROBADOS

aprobados


47,8 %



Distribución de notas

2024

Resultados por pregunta

CUESTIÓN 1A (Átomo y Sistema Periódico)

- **1A.** Justifique la veracidad o falsedad de las siguientes afirmaciones:
- a) Una de las posibles combinaciones de los números cuánticos del electrón diferenciador del átomo de B es (2,1,0,-1/2).
- b) Los electrones que se encuentran en los orbitales 2p tienen la misma energía.
- c) El átomo de oxígeno tiene dos electrones desapareados en los orbitales 2p.
- d) Los elementos situados en el grupo 13 de la tabla periódica tienen distinto número de electrones en su capa de valencia.

LA HACEN	MEDIA	NOTA	
10 %	0,82	4,1	

Resultados por pregunta

CUESTIÓN 1B (Átomo y Sistema Periódico)

- **1B.** Sean los elementos A (Z= 6), B (Z= 17) y C (Z= 36).
- a) Escriba las configuraciones electrónicas de los elementos B y C en su estado fundamental.
- b) Razone el grupo y periodo de los elementos A y C.
- c) Justifique cuál de los tres elementos tiene menor radio.
- d) Explique cuál de los tres elementos tiene mayor energía de ionización.

LA HACEN	MEDIA	NOTA	
90 %	1,25	6,3	

Resultados por pregunta

CUESTIÓN 2A (Termodinámica)

- **2A.** a) Estudie la espontaneidad del siguiente proceso: $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$ $\Delta H^0 = -241.8 \text{ kJ} \cdot \text{mol}^{-1}$
- b) Razone si la obtención de amoniaco a partir de sus elementos presenta un aumento o disminución de entropía.
- c) En qué caso coindice el valor del calor de reacción a presión constante y el valor del calor de reacción a volumen constante. Justique la respuesta utilizando la relación que existe entre ambas.
- d) Razone cómo varía la entropía en la fusión del hielo.

LA HACEN	MEDIA	NOTA	
34 %	0,88	4,4	

Resultados por pregunta

CUESTIÓN 2B (Equilibrio Solubilidad)

2B. La K_S del Ca(OH)₂ a 25 °C es 5·10-6.

- a) A partir del equilibrio correspondiente, escriba la expresión del producto de solubilidad en función de la solubilidad molar.
- b) Razone si la solubilidad del Ca(OH)2 en agua aumentará al añadir CaCl2
- c) Justifique si se producirá precipitado de Ca(OH)₂ en una disolución a 25 °C en la que [Ca²⁺]= 10⁻¹ M y [OH-]= 10⁻² M.
- d) Razone cómo varía la solubilidad al disminuir el pH de una disolución de Ca(OH)2

LA HACEN	MEDIA	NOTA	
66 %	1,04	5,2	

Resultados por pregunta

PROBLEMA 3A (Equilibrio)

3A. El NO₂ se descompone según el equilibrio: $2NO_2(g) \rightleftarrows 2NO(g) + O_2(g)$

En un recipiente de 2 L a 25 °C se introduce NO₂(g) hasta que su presión es 21,1 atm. Posteriormente, se calienta a 300 °C hasta alcanzar el equilibrio y se observa que la presión es 50 atm.

- a) Calcule el valor de Kc
- b) Calcule el valor de KP y el grado de disociación del NO2 en esas condiciones.

Dato: R= 0,082 atm·L·mol-1·K-1

LA HACEN	MEDIA	NOTA	
43 %	0,77	3,8	

Resultados por pregunta

PROBLEMA 3B (Ajuste redox)

3B. Al hacer reaccionar ácido clorhídrico (HCl) con dicromato de potasio (K₂Cr₂O₇) se forma tricloruro de cromo (CrCl₃), dicloro (Cl₂), cloruro de potasio (KCl) y agua (H₂O).

- a) Ajuste la reacción molecular por el método del ion-electrón.
- b) ¿Qué volumen de HCl del 37% de riqueza en masa y densidad 1,19 g⋅mL⁻¹ se necesitará para que reaccionen 7 g de K₂Cr₂O₇? Datos: Masas atómicas relativas: H=1; O= 16; Cl= 35,5; K= 39; Cr= 52

LA HACEN	MEDIA	NOTA	
57 %	0,97	4,8	

Resultados por pregunta

CUESTIÓN 4 (Orgánica con formulación)

4A. Nombre o formule los siguientes compuestos:

c) Etanamina

d) Penta-1,3-dieno

- **4B.** Dados los compuestos: (1) CH₃CH(OH)CH₂CH₂CH₃ y (2) CH₃CH₂CH₂CH₂CH₂OH.
- a) Justifique el tipo de isomería que presentan.
- **b)** Identifique cuál de los compuestos se deshidrata con H₂SO₄ y calor para formar un producto con isomería geométrica. Dibuje los isómeros geométricos.
- c) Razone cuál de los compuestos presenta isomería óptica.

LA HACEN	MEDIA	NOTA	
100 %	0,90	6,0	

Resultados por pregunta

PROBLEMA 5 (Termodinámica, Acido Base y Formulación inorgánica)

PREGUNTA 5.- (2,5 puntos). Responda TODOS los apartados planteados.

¿MÁS BUENO QUE EL PAN?

Sin duda uno de los alimentos principales y claves en la evolución del ser humano ha sido el pan. La mezcla original de harina, levadura, agua y sal ha servido como base nutricional de las sociedades desde hace casi 9000 años. Su proceso de elaboración es sencillo: mezclar los ingredientes citados, amasar y hornear. Las levaduras, unos microorganismos vivos, llevan a cabo el proceso de fermentación en el que digieren la glucosa (C₆H₁₂O₆) que contiene la harina, generando entre otros productos CO₂ y etanol (C₂H₆O). Esto hace que la masa crezca y se llene de gas, según la reacción:

$$C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$$

La glucosa y el etanol tienen valores de entalpias de combustión de -2816,8 kJ·mol-1 y -1366,9 kJ·mol-1, respectivamente.

Esta sencillez dista mucho de los panes que podemos encontrar hoy en el mercado. Actualmente, este alimento contiene un exceso de aditivos: agentes para que la masa crezca más, como el **hidrogenocarbonato de sodio**, que produce más CO_2 durante el proceso; agentes que ayudan a retrasar su envejecimiento, como el **fosfato de sodio**; o reguladores del pH como el H_2SO_4 o el HCl para impedir que proliferen microorganismos.

GBA TRANSPORT DE BIT TROCKS III. BRANCO 22347 (UN 1786)

Cantidad: 1 L

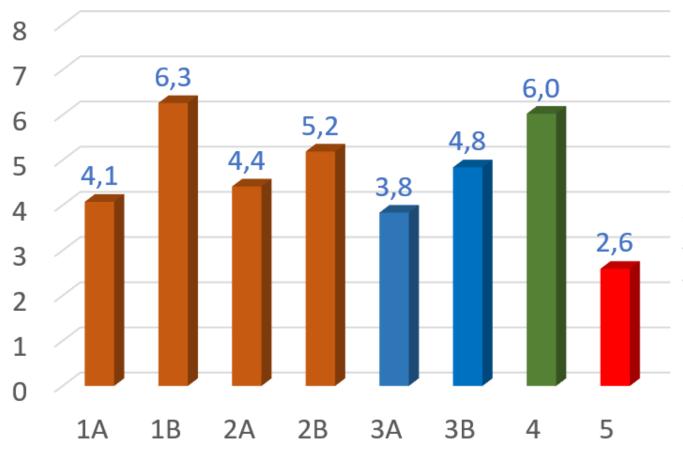
Según la legislación vigente, la responsabilidad de la entrega del residuo de envase o envase usado para su comecta gesti ambiental comesponde al poseedor final

- a) Calcule el calor desprendido en la producción de un mol de etanol mediante la fermentación de glucosa. (1 punto)
- b) Para regular el pH de una masa de pan industrial se necesitan 150 L de una disolución de HCl de pH 3,98 ¿qué cantidad de HCl comercial se tendrá que utilizar para prepararla? (1 punto)
- c) Formule o nombre los cuatro compuestos que aparecen en negrita en el texto. (0,5 puntos)

MEDIA

0,65

NOTA


2,6

PAU 25-26

Distrito de la UGR. Resultados Extraordinaria

Comparativa de preguntas

1A: Átomo y Sistema Periódico

1B: Átomo y Sistema Periódico

2A: Termodinámica

2B: Equilibrio Solubilidad

3A: Problema equilibrio

3B: Problema ajuste redox

4: Orgánica

5: Problema competencial

Orden del día

- 1) Presentación de los ponentes de Química y web de la DUA.
- 2) Resultados de la PAU del curso anterior 2024/25.
- 3) Orientaciones para la PAU del curso 2025-26.
- 4) Información sobre las Olimpiadas de Química 2026.
- 5) Ruegos, sugerencias y preguntas.

PAU 25-26

Directrices y orientaciones generales PAU 2024/25

Novedades

2023/24

Termodinámica → se mantiene

2024/25

Obligatoriedad → CRUE (mín. 20-30%) → Andalucía 30%

Ortografía... → faltas graves

Preguntas → 5 (desaparece la específica de formulación)

Formulación → NO penalizan (4 Inorg. + 4 Org.) integradas

Pregunta de Orgánica → en todos los exámenes

Problema "contextualizado" → en todos los exámenes

Obligatoriedad 20% \rightarrow 4 optativa, Polímeros, 5 \rightarrow 2 puntos, no hay arrastre salvo ajustes redox ion electrón

Directrices y orientaciones generales PAU 2024/25

Novedades

PREGUNTAS: 1 a 5 \rightarrow 2 puntos; 1 a 4 \rightarrow 2 opciones; 4 \rightarrow orgánica; 5 \rightarrow problema contextualizado.

PROTECCIÓN CONTRA LA CORROSIÓN

El deterioro como consecuencia de la oxidación es un gran problema económico para industrias que utilizan estructuras de hierro o de acero, sobre todo si se encuentran en ambientes húmedos o directamente en contacto con el agua, como plataformas sumergidas en el mar, tuberías subterráneas o cascos de barcos. En estos casos, la oxidación para formar **óxido de hierro(III)** es muy rápida y supondría grandes inversiones económicas tener que sustituir frecuentemente las partes

oxidadas.

Una solución para evitar la oxidación del hierro y del acero es incorporar a la estructura piezas de otros metales que puedan formar con el hierro una pila galvánica en la que éste sea el cátodo y el otro metal funcione como ánodo. A este método de protección se le llama "protección catódica" y a las piezas metálicas utilizadas para ello se les llama *ánodos de sacrificio*.

Uno de los metales más usados como *ánodo de sacrificio* es el magnesio, que puede obtenerse a partir del agua del mar, donde se encuentra disuelto en forma de **MgCl**₂ y de sulfato de magnesio. Una vez separado el MgCl₂ sólido, se procede a su electrolisis en estado fundido obteniéndose magnesio y cloro gaseoso.

Tabla. Potenciales normales de reducción

Electrodo	E°(V)
Ag+/Ag	+0,80
Cu ²⁺ /Cu	+0,34
Fe³+/Fe	-0,04
Zn ²⁺ /Zn	-0,76
Al ³⁺ /Al	-1,67
Ma2+/Ma	_2 2 <u>8</u>

En la corteza terrestre también está presente el magnesio en forma de $MgCO_3$ ($K_S = 3,5 \cdot 10^{-8}$), compuesto insoluble al igual que otras especies de este metal como el **fosfato de magnesio** ($K_S = 1,04 \cdot 10^{-24}$), el MgF_2 ($K_S = 5,16 \cdot 10^{-11}$) o el $Mg(OH)_2$ ($K_S = 5,61 \cdot 10^{-12}$).

- a) Justifique cuáles de los metales de la Tabla pueden utilizarse como ánodo de sacrificio. (0,5 puntos)
- b) Calcule la intensidad de corriente necesaria para obtener una producción diaria de 10 kg de magnesio metálico por electrólisis de MgCl₂ fundido, escribiendo la reacción correspondiente. (0,5 puntos)

Datos: Masa atómica relativa: Mg= 24,3

- c) A partir del equilibrio de solubilidad del MgCO₃, determine la masa de magnesio que hay disuelta en 25 L de disolución saturada de dicha sal. (0,5 puntos)
- d) Nombre o formule los cuatro compuestos que aparecen en negrita en el texto. (0,5 puntos)

Directrices y orientaciones generales PAU 2024/25

Criterios específicos del modelo de prueba

- 1. Si el alumnado responde a más apartados de los indicados para cada pregunta, sólo serán calificados aquellos que aparezcan desarrollados en primer lugar.
- 2. Con relación a las respuestas, se valorará la claridad y la coherencia de las explicaciones como prueba de la comprensión de los conceptos teóricos y su aplicación.
- 3. La falta de justificación o razonamiento cuando se solicite se penalizará con el 100 %.
- 4. En la resolución de las preguntas en las que haya que realizar cálculos, el alumnado deberá mostrar el desarrollo de los cálculos realizados. Se tendrá en cuenta el adecuado planteamiento de los mismos, el proceso de resolución y las conclusiones finales obtenidas.
- 5. Si en el proceso de resolución de las preguntas se comete un error de concepto básico, este conllevará una puntuación de cero en el apartado correspondiente.
- 6. Los errores de cálculo numérico se penalizarán con un 10% de la puntuación del apartado de la pregunta correspondiente, pudiendo ser de hasta el 100% si el resultado presentado es absurdo.
- 7. No se aplicará doble penalización cuando un resultado numérico dependa de un cálculo numérico previo erróneo. Sin embargo, en las preguntas que requieran el ajuste de una ecuación redox, y no se utilice el método del ion-electrón, se penalizará el 25 % en el siguiente apartado.
- 8. La expresión de los resultados numéricos sin unidades o unidades incorrectas, cuando sean necesarias, se penalizará con un 25% del valor del apartado.
- 9. No se penalizará un mal redondeo de resultados, ni se tendrá en cuenta el número de cifras significativas.
- 10. La corrección ortográfica (grafías, tildes y puntuación), la coherencia, la cohesión, la corrección gramatical, la corrección léxica y la presentación, se penalizarán teniendo en cuenta los siguientes criterios:
- Los dos primeros errores ortográficos no se penalizarán.
- Cuando se repita la misma falta de ortografía se contará como una sola.
- A partir de la tercera falta de ortografía se deducirán 0,10 puntos hasta un máximo de un punto.
- Por errores en la redacción, en la presentación, falta de coherencia, falta de cohesión, incorrección léxica e incorrección gramatical se podrá deducir un máximo de medio punto.
- Cuando la suma de las deducciones anteriores sea superior a un punto, la máxima deducción permitida será de un punto.
- 11. La nota del examen será la suma de la puntuación obtenida en cada uno de los ejercicios de que consta, expresada con dos cifras decimales, sin que sea necesario obtener un mínimo en cada uno de ellos.

Reunión coordinación PONENCIA de QUIMICA 2025/26 Orden del día

- 1) Presentación de los ponentes de Química y web de la DUA.
- 2) Resultados de la PAU del curso anterior 2024/25.

- 3) Orientaciones para la PAU del curso 2025-26.
- 4) Información sobre las Olimpiadas de Química 2026.
- 5) Ruegos, sugerencias y preguntas.

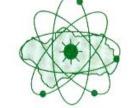
Olimpiadas de Química 2024/25

4) Información sobre las Olimpiadas de Química 2025

La XXXVIII Olimpiada Española de Química, en su edición de 2026, se desarrollará en la Universidad de Alicante durante el 24 al 26 de abril. Las instituciones organizadoras son el Ministerio de Educación, Formación Profesional y Deportes y la Real Sociedad Española de Química, colaborando las Asociaciones y Colegios de Químicos y las Universidades.

En la web de la RSEQ se irán actualizando los datos del programa, sedes y demás detalles, (https://rseq.org/olimpiadas-de-quimica/).

Los requerimientos ministeriales para los premios en metálico a los ganadores, que son en **RÉGIMEN DE CONCURRENCIA COMPETITIVA**, obligan a que las fases **locales/territoriales** tengan que desarrollarse antes de la fecha anterior.



Olimpiadas de Química 2026

Propuesta fase local

https://staor.rseq.org/

ASOCIACIÓN DE QUÍMICOS DE ANDALUCÍA

https://www.colegiodequimicos.org/la-asociacion/

2. Conceptos químicos fundamentales. Estequiometría. Reacciones químicas

en disolución. Estados de agregación de la materia. Disoluciones.

Grado en Química Máster Khemia

FECHA PROPUESTA:

19 de marzo jueves

Parte de teoría (1 h) Descanso (30 min)

Parte de problemas (1 h)

Marzo								
Sem.	Lu	Ма	Mi	Ju	Vi	Sá	Do	
9							1	
10	2	3	4	5	6	7	8	
11	9	10	11	12	13	14	15	
12	16	17	18	19	20	21	22	
13	23	24	25	26	27	28	29	
14	30	31						

1. Nomenclatura química: inorgánica y orgánica.

	Abril							
Sem.	Lu	Ма	Mi	Ju	Vi	Sá	Do	
14			1	2	3	4	5	
15	6	7	8	9	10	11	12	
16	13	14	15	16	17	18	19	
17	20	21	22	23	24	25	26	
18	27	28	29	30				

Coordina Natalia Navas Iglesias

natalia@ugr.es Olimpiada 2025

50 estudiantes (23 F + 27 M) 13 centros (7 Col. + 6 IES)

- Termoquímica.
 Estructura de la materia.
- 5. El enlace químico.
- 6. Cinética.
- 7. Equilibrio químico.

Reunión coordinación PONENCIA de QUIMICA 2025/26 Orden del día

- 1) Presentación de los ponentes de Química y web de la DUA.
- 2) Resultados de la PAU del curso anterior 2024/25.
- 3) Orientaciones para la PAU del curso 2025-26.

- 4) Información sobre las Olimpiadas de Química 2026.
- 5) Ruegos, sugerencias y preguntas.

